A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions

Author:

Page Hector J. I.1,Wilson Jonathan J.1,Jeffery Kate J.1ORCID

Affiliation:

1. Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom

Abstract

In the mammalian brain, allocentric (Earth-referenced) head direction, called azimuth, is encoded by head direction (HD) cells, which fire according to the facing direction of the animal’s head. On a horizontal surface, rotations of the head around the dorsoventral (D-V) axis, called yaw, correspond to changes in azimuth and elicit appropriate updating of the HD “compass” signal to enable large-scale navigation. However, if the animal moves through three-dimensional (3D) space then there is no longer a simple relationship between yaw rotations and azimuth changes, and so processing of 3D rotations is needed. Construction of a global 3D compass would require complex integration of 3D rotations, and also a large neuronal population, most neurons of which would be silent most of the time since animals rarely sample all available 3D orientations. We propose that, instead, the HD system treats the 3D space as a set of interrelated 2D surfaces. It could do this by updating activity according to both yaw rotations around the D-V axis and rotations of the D-V axis around the gravity-defined vertical axis. We present preliminary data to suggest that this rule operates when rats move between walls of opposing orientations. This dual-axis rule, which we show is straightforward to implement using the classic one-dimensional “attractor” architecture, allows consistent representation of azimuth even in volumetric space and thus may be a general feature of mammalian directional computations even for animals that swim or fly.NEW & NOTEWORTHY Maintaining a sense of direction is complicated when moving in three-dimensional (3D) space. Head direction cells, which update the direction sense based on head rotations, may accommodate 3D movement by processing both rotations of the head around the axis of the animal’s body and rotations of the head/body around gravity. With modeling we show that this dual-axis rule works in principle, and we present preliminary data to support its operation in rats.

Funder

Biotechnology and Biological Sciences Research Council (BBSRC)

Medical Research Council (MRC)

Wellcome Trust

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3