Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron

Author:

Foutz Thomas J.12,Arlow Richard L.12,McIntyre Cameron C.12

Affiliation:

1. Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio; and

2. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio

Abstract

Optogenetics is an emerging field of neuromodulation that permits scaled, millisecond temporal control of the membrane dynamics of genetically targeted cells using light. Optogenetic technology has revolutionized neuroscience research; however, numerous biophysical questions remain on the optical and neuronal factors impacting the modulation of neural activity with photon-sensitive ion channels. To begin to address such questions, we developed a computational tool to explore the underlying principles of optogenetic neural stimulation. This “light-neuron” model consists of theoretical representations of the light dynamics generated by a fiber optic in brain tissue, coupled to a multicompartment cable model of a cortical pyramidal neuron embedded with channelrhodopsin-2 (ChR2) membrane dynamics. Simulations revealed that the large energies required to generate an action potential are primarily due to the limited conductivity of ChR2, and that the major determinants of stimulation threshold are the surface area of illuminated cell membrane and proximity to the light source. Our results predict that the activation threshold is sensitive to many of the properties of ChR2 (density, conductivity, and kinetics), tissue medium (scattering and absorbance), and the fiber-optic light source (diameter and numerical aperture). We also illustrate the impact of redistributing the ChR2 expression density (uniform vs. nonuniform) on the activation threshold. The model system developed in this study represents a scientific instrument to characterize the effects of optogenetic neuromodulation, as well as an engineering design tool to help guide future development of optogenetic technology.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3