Ca2+-Dependent and Na+-Dependent K+ Conductances Contribute to a Slow AHP in Thalamic Paraventricular Nucleus Neurons: A Novel Target for Orexin Receptors

Author:

Zhang Li1,Kolaj Miloslav1,Renaud Leo P.1

Affiliation:

1. Neurosciences Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Thalamic paraventricular nucleus (PVT) neurons exhibit a postburst apamin-resistant slow afterhyperpolarization (sAHP) that is unique to midline thalamus, displays activity dependence, and is abolished in tetrodotoxin. Analysis of the underlying s IAHP confirmed a requirement for Ca2+ influx with contributions from P/Q-, N-, L-, and R subtype channels, a reversal potential near EK+ and a significant reduction by UCL-2077, barium or TEA, consistent with a role for KCa channels. s IAHP was significantly reduced by activation of either the cAMP or the protein kinase C (PKC) signaling pathway. Further analysis of the sAHP revealed an activity-dependent but Ca2+-independent component that was reduced in high [K+]o and blockable after Na+ substitution with Li+ or in the presence of quinidine, suggesting a role for KNa channels. The Ca2+-independent sAHP component was selectively reduced by activation of the PKC signaling pathway. The sAHP contributed to spike frequency adaptation, which was sensitive to activation of either cAMP or PKC signaling pathways and, near the peak of membrane hyperpolarization, was sufficient to cause de-inactivation of low threshold T-Type Ca2+ channels, thus promoting burst firing. PVT neurons are densely innervated by orexin-immunoreactive fibers, and depolarized by exogenously applied orexins. We now report that orexin A significantly reduced both Ca2+-dependent and -independent s IAHP, and spike frequency adaptation. Furthermore orexin A-induced s IAHP inhibition was mediated through activation of PKC but not PKA. Collectively, these observations suggest that KCa and KNa channels have a role in a sAHP that contributes to spike frequency adaptation and neuronal excitability in PVT neurons and that the sAHP is a novel target for modulation by the arousal- and feeding-promoting orexin neuropeptides.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3