Affiliation:
1. Department of Neurobiology, Duke University, Durham, North Carolina
Abstract
Optogenetic activation of axons is a powerful approach for determining the synaptic properties and impact of long-range projections both in vivo and in vitro. However, because of the difficulty of measuring activity in axons, our knowledge of the reliability of optogenetic axonal stimulation has relied on data from somatic recordings. Yet, there are many reasons why activation of axons may not be comparable to cell bodies. Thus we have developed an approach to more directly assess the fidelity of optogenetic activation of axonal projections. We expressed opsins (ChR2, Chronos, or oChIEF) in the mouse primary visual cortex (V1) and recorded extracellular, pharmacologically isolated presynaptic action potentials in response to axonal activation in the higher visual areas. Repetitive stimulation of axons with ChR2 resulted in a 70% reduction in the fiber volley amplitude and a 60% increase in the latency at all frequencies tested (10–40 Hz). Thus ChR2 cannot reliably recruit axons during repetitive stimulation, even at frequencies that are reliable for somatic stimulation, likely due to pronounced channel inactivation at the high light powers required to evoke action potentials. By comparison, oChIEF and Chronos evoked photocurrents that inactivated minimally and could produce reliable axon stimulation at frequencies up to 60 Hz. Our approach provides a more direct and accurate evaluation of the efficacy of new optogenetic tools and has identified Chronos and oChIEF as viable tools to interrogate the synaptic and circuit function of long-range projections.
Funder
HHS | NIH | NIH Office of the Director (OD)
Pew Charitable Trusts (PEW)
Alfred P. Sloan Foundation (Sloan Foundation)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献