Affiliation:
1. Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
Abstract
Certain neurons of vertebrates are specialized for high-frequency firing. Interestingly, high-frequency firing is also seen in central neurons in basal bilateral metazoans. Recently, the role of potassium currents with rightward-shifted activation curves in producing high-frequency firing has come under scrutiny. We apply intracellular recording, patch-clamp techniques, and compartmental modeling to examine the roles of rightward-shifted potassium currents in repetitive firing and shaping of action potentials in central neurons of the flatworm, Notoplana atomata ( Phylum Platyhelminthes). The kinetic properties of potassium and sodium currents were determined from patch-clamp experiments on dissociated brain cells. To predict the effects of changing the steady-state and kinetic properties of these potassium currents, these data were incorporated into a computer model of a 30-μm spherical cell with the levels of current adjusted to approximate the values recorded in voltage-clamp experiments. The model was able to support regenerative spikes at high frequencies in response to injected current. Current-clamp recordings of cultured cells and of neurons in situ also showed evidence of very-high-frequency firing. Adjusting the ratio of inactivating to non-inactivating potassium currents had little effect upon the firing pattern of the cell or its ability to fire at high frequencies, whereas the presence of the non-inactivating current was necessary for repetitive firing. Computer simulations suggested that the rightward shift in voltage sensitivity confers a raised firing threshold, while rapid channel kinetics underlie high frequency firing, and the large activation range enhances the coding range of the cell.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献