Effects of Antidromic Discharges in Crayfish Primary Afferents

Author:

Cattaert Daniel12,Bévengut Michelle2

Affiliation:

1. Laboratoire Neurobiologie des Réseaux, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5816, Université Bordeaux I, Biologie Animale, 33405 Talence Cedex; and

2. Laboratoire Neurobiologie et Mouvements, CNRS, 13402 Marseille Cedex 20, France

Abstract

Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural networks. In this study, we analyzed the effect of antidromic discharges on the sensory activity of a leg proprioceptor in in vitro preparations of the crayfish CNS. Intracellular microelectrodes were used both to record the orthodromic spikes and to elicit antidromic spikes by injecting squares pulses of depolarizing current at various frequencies. Experiments were performed on the three types of identified sensory afferents (tonic, phasotonic, and phasic). The main results showed a reduction of the firing frequency of the orthodromic activity in 82% of the tested afferents. In tonic afferents, during their occurrences and according to their frequency, antidromic spikes or bursts reduced or suppressed the orthodromic activity. Following their terminations, they also induced a silent period and a gradual recovery of the orthodromic activity, both of which increased as the duration and the frequency of the antidromic bursts increased. In phasotonic and phasic afferents, antidromic bursts reduced or suppressed the phasic responses as their frequency and durations increased. In phasotonic afferents, if elicited prior to the movements, long-duration bursts with increasing frequency reduced more rapidly the tonic background activity than the phasic one whereas short-duration bursts at high frequency produced strong decreases of both. The effect of antidromic bursts accumulated when they are repetitively elicited. Antidromic bursts induced a much larger decrease of the sensory activity than adaptation alone. The occurrences of antidromic spikes or bursts may have a functional role in modulating the incoming sensory messages during locomotion. The mechanisms by which antidromic spikes modulate the firing sensitivity of the primary afferents may well lie in modifications of the properties of either mecanotransduction and/or spike initiation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3