Short- and Long-Term Plasticity of the Perforant Path Synapse in Hippocampal Area CA3

Author:

McMahon David B.T.1,Barrionuevo German1

Affiliation:

1. Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Abstract

The direct perforant path (PP) projection to CA3 is a major source of cortical input to the hippocampal region, yet relatively little is known about the basic properties of physiology and plasticity in this pathway. We tested whether PP long-term potentiation (LTP) in CA3 possesses the Hebbian property of associativity; i.e., whether the firing of fibers of different orders can induce PP LTP. We stimulated PP with weak trains of high-frequency stimulation (HFS), which by itself was below the threshold for LTP induction. The identical HFS was effective in inducing LTP when the mossy fiber pathway (MF) was activated simultaneously, thus demonstrating associative plasticity between the two pathways. We also demonstrated associative LTP between PP and recurrent collateral fibers (RC). PP LTP was blocked by the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-amino-5-phosphonovaleric acid in both the associative and homosynaptic induction conditions. Neither MF nor RC fiber HFS alone resulted in permanent changes in PP field excitatory postsynaptic potential (fEPSP) amplitude. However, HFS delivered to either MF or RC alone led to transient heterosynaptic depression of the PP fEPSP. Our results support the conceptual framework that regards CA3 as an autoassociative memory network in which efficient retrieval of previously stored activity patterns is mediated by associative plasticity of the PP synapse.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3