Model for Intersegmental Coordination of Leech Swimming: Central and Sensory Mechanisms

Author:

Cang Jianhua1,Friesen W. Otto1

Affiliation:

1. Department of Biology, National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22904-4328

Abstract

Sensory feedback as well as the coupling signals within the CNS are essential for leeches to produce intersegmental phase relationships in body movements appropriate for swimming behavior. To study the interactions between the central pattern generator (CPG) and peripheral feedback in controlling intersegmental coordination, we have constructed a computational model for the leech swimming system with physiologically realistic parameters. First, the leech swimming CPG is simulated by a chain of phase oscillators coupled by three channels of coordinating signals. The activity phase, the projection direction, and the phase response curve (PRC) of each channel are based on the identified intersegmental interneuron network. Output of this largely constrained model produces stable coordination in the simulated CPG with average phase lags of 8–10°/segment in the period range from 0.5 to 1.5 s, similar to those observed in isolated nerve cords. The model also replicates the experimental finding that shorter chains of leech nerve cords have larger phase lags per segment. Sensory inputs, represented by stretch receptors, were subsequently incorporated into the CPG model. Each stretch receptor with its associated PRC, which was defined to mimic the experimental results of phase-dependent phase shifts of the central oscillator by the ventral stretch receptor, can alter the phase of the local central oscillator. Finally, mechanical interactions between the muscles from neighboring segments were simulated by PRCs linking adjacent stretch receptors. This model shows that interactions between neighboring muscles could globally increase the phase lags to the larger value required for the one-wavelength body form observed in freely swimming leeches. The full model also replicates the experimental observation that leeches with severed nerve cords have larger intersegmental phase lags than intact animals. The similarities between physiological and simulation results demonstrate that we have established a realistic model for the central and peripheral control of intersegmental coordination of leech swimming.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3