Effects of Protein Kinase A Activation on the Responses of Primate Spinothalamic Tract Neurons to Mechanical Stimuli

Author:

Lin Qing1,Wu Jing1,Willis William D.1

Affiliation:

1. Department of Anatomy and Neurosciences, Marine Biomedical Institute, The University of Texas Medical Branch, Galveston, Texas 77555-1069

Abstract

Behavioral and anatomical studies by our group have suggested that the protein kinase A (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. In this study, we have examined the effects of activation of the PKA cascade on the responses of spinothalamic tract (STT) neurons to peripheral mechanical stimuli in anesthetized and paralyzed monkeys. PKA in the spinal cord was activated by intra-spinal infusion of forskolin, an activator of adenylate cyclase, by microdialysis. There was a consistent increase in responses to mechanical pressure and pinch stimuli in all STT cells tested when forskolin was administered. Enhanced responses remained at relatively high levels when forskolin had been washed out for 30 min. However, in most STT cells tested (65%), the responses to brushing stimuli were not obviously changed when forskolin was given. Background activity was slightly increased when forskolin was administered. An inactive isomer of forskolin,d-forskolin, did not produce significant effects on cellular activity. The sensitization of STT cells to noxious mechanical stimuli produced by forskolin could be blocked by pretreatment of the spinal cord with the PKA inhibitor, N-[2-(( p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamine (H89). The same dose of H89 did not affect the enhanced responses to mechanical stimuli produced by activation of protein kinase G by intra-spinal infusion of 8-bromo-cGMP, indicating that the effect of forskolin was selective. The present data suggest that activation of PKA can preferentially enhance the responses of STT cells to noxious mechanical stimuli without producing an increase in responses to innocuous brushing stimuli. We speculate that the PKA signal transduction cascade may contribute more to secondary mechanical hyperalgesia than to secondary mechanical allodynia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3