Long-Term Alteration of S-Type Potassium Current and Passive Membrane Properties in Aplysia Sensory Neurons Following Axotomy

Author:

Ungless Mark A.1,Gasull Xavier1,Walters Edgar T.1

Affiliation:

1. Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas 77030

Abstract

In many neurons, axotomy triggers long-lasting alterations in excitability as well as regenerative growth. We have investigated mechanisms contributing to the expression of axotomy-induced, long-term hyperexcitability (LTH) of mechanosensory neurons in Aplysia californica. Electrophysiological tests were applied to pleural sensory neurons 5–10 days after unilateral crush of pedal nerves. Two-electrode current-clamp experiments revealed that compared with uninjured sensory neurons on the contralateral side of the body, axotomized sensory neurons consistently displayed alterations of passive membrane properties: notably, increases in input resistance ( R in), membrane time constant (τ), and apparent input capacitance. In some cells, axotomy also depolarized the resting membrane potential (RMP). Axotomized sensory neurons showed a lower incidence of voltage relaxation (“sag”) during prolonged hyperpolarizing pulses and greater depolarizations during long (2 s) but not brief (20 ms) pulses. In addition to a reduction in spike accommodation, axotomized sensory neurons displayed a dramatic decrease in current (rheobase) required to reach spike threshold during long depolarizations. The increase in τ was associated with prolongation of responses to brief current pulses and with a large increase in the latency to spike at rheobase. Two-electrode voltage-clamp revealed an axotomy-induced decrease in a current with two components: a leakage current component and a slowly activating, noninactivating outward current component. Neither component was blocked by agents known to block other K+ currents in these neurons. In contrast to the instantaneous leakage current seen with hyperpolarizing and depolarizing steps, the late component of the axotomy-sensitive outward current showed a relatively steep voltage dependence with pulses to V m > −40 mV. These features match those of the S-type (“serotonin-sensitive”) K+ current, I K,S. The close resemblance of I K,S to a background current mediated by TREK-1 (KCNK2) channels in mammals, raises interesting questions about alterations of this family of channels during axotomy-induced LTH in both Aplysia and mammals. The increase in apparent C in may be a consequence of the extensive sprouting that has been observed in axotomized sensory neurons near their somata, and the decrease in I K,S probably helps to compensate for the decrease in excitability that would otherwise occur as new growth causes both cell volume and C in to increase. In peripheral regions of the sensory neuron, a decrease in I K,S might enhance the safety factor for conduction across regenerating segments that are highly susceptible to conduction block.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3