Inhibitory Synchronization of Bursting in Biological Neurons: Dependence on Synaptic Time Constant

Author:

Elson Robert C.1,Selverston Allen I.1,Abarbanel Henry D. I.12,Rabinovich Mikhail I.1

Affiliation:

1. Institute for Nonlinear Science and

2. Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California San Diego, La Jolla, California 92093-0402

Abstract

Using the dynamic clamp technique, we investigated the effects of varying the time constant of mutual synaptic inhibition on the synchronization of bursting biological neurons. For this purpose, we constructed artificial half-center circuits by inserting simulated reciprocal inhibitory synapses between identified neurons of the pyloric circuit in the lobster stomatogastric ganglion. With natural synaptic interactions blocked (but modulatory inputs retained), these neurons generated independent, repetitive bursts of spikes with cycle period durations of ∼1 s. After coupling the neurons with simulated reciprocal inhibition, we selectively varied the time constant governing the rate of synaptic activation and deactivation. At time constants ≤100 ms, bursting was coordinated in an alternating (anti-phase) rhythm. At longer time constants (>400 ms), bursts became phase-locked in a fully overlapping pattern with little or no phase lag and a shorter period. During the in-phase bursting, the higher-frequency spiking activity was not synchronized. If the circuit lacked a robust periodic burster, increasing the time constant evoked a sharp transition from out-of-phase oscillations to in-phase oscillations with associated intermittent phase-jumping. When a coupled periodic burster neuron was present (on one side of the half-center circuit), the transition was more gradual. We conclude that the magnitude and stability of phase differences between mutually inhibitory neurons varies with the ratio of burst cycle period duration to synaptic time constant and that cellular bursting (whether periodic or irregular) can adopt in-phase coordination when inhibitory synaptic currents are sufficiently slow.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3