Optical Imaging of Long-Lasting Depolarization on Burst Stimulation in Area CA1 of Rat Hippocampal Slices

Author:

Tominaga Takashi1,Tominaga Yoko1,Ichikawa Michinori1

Affiliation:

1. Laboratory for Brain-Operative Devices, The Institute of Physical and Chemical Research Brain Science Institute, Wako, Saitama 351-0198, Japan

Abstract

Postsynaptic depolarization of dendrites paired with spike generation at the soma is considered to be a central mechanism of long-term potentiation (LTP) induction and a prime example of a Hebbian synapse. This pairing, however, has never been actually demonstrated on tetanic stimulation. Optical imaging of neural activity with a voltage-sensitive dye (VSD) is one potentially suitable method for examining this pairing. It is possible with optical recording to examine simultaneously the excitation of postsynaptic neurons at multiple sites. Thus the pairing of spike generation at the soma and dendritic depolarization can be examined with population level optical recording in highly laminar structures such as the hippocampal slice preparation. For example, one can correlate the optical signals obtained from cell layers with the activity of the soma, and, similarly, optical signals from stratum radiatum can be correlated with the activity of the apical dendrite, even though one cannot calibrate the optical signals in terms of actual membrane potential. Using the VSD aminonaphthylethenylpyridinium in rat hippocampal slices, we aimed to examine the pairing. Standard tetanic stimulation (100 Hz, 1 s) that elicited LTP in the field excitatory postsynaptic potential (fEPSP) resulted in a long-lasting depolarizing optical signal (about 2 s) that spread progressively along the known input pathway of CA1. The time course of this long-lasting depolarization was similar to that recorded intracellularly and to that reflected in the fEPSP. The long-lasting depolarization was insensitive tod,l-2-amino-5-phosphonovaleric acid (d,l-APV, 50 μM), but d,l-APV inhibited the induction of LTP; this allowed us to increase the signal-to-noise ratio of the optical signal by averaging several trials. Using this improved optical signal, we confirmed that postsynaptic cells practically “missed” spikes during tetanic stimulation in most parts of CA1, which had been suggested in the intracellular recordings. Intracellular recordings revealed a 23% reduction in input resistance, which might explain the failed spike generation at the soma via shunting. A steep spatial convergence of the depolarization along the transverse axis of area CA1 was observed. In contrast to the response resulting from a standard 100-Hz tetanus, broader activation, and paired depolarization with somatic spikes was observed on θ-burst stimulation. Overall we concluded that postsynaptic spike generation, at least in synchronous form, has less effect on LTP induction with standard tetanic stimulation, while θ-burst tetanic stimulation can elicit pairing of dendritic depolarization and somatic discharge.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3