Integrated Motor Cortical Control of Task-Related Muscles During Pointing in Humans

Author:

Devanne Hervé1,Cohen Leonardo G.2,Kouchtir-Devanne Nezha3,Capaday Charles4

Affiliation:

1. Médecine Physique et Réadaptation, CHRU Lille, 59037 Lille Cedex, France and Université du Littoral-Côte d'Opale, BP699, 62228 Calais Cedex, France;

2. Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20982-1430;

3. Laboratoire de Neurophysique et Physiologie du Système Moteur, FRE Centre National de la Recherche Scientifique, 75006 Paris, France; and

4. Department of Anatomy and Physiology, Centre de Recherche UniversitéLaval-Robert Gifford, Brain and Movement Laboratory, Université Laval, Quebec City, Quebec G1J 2G3, Canada

Abstract

A large body of compelling but indirect evidence suggests that the motor cortex controls the different forelimb segments as a whole rather than individually. The purpose of this study was to obtain physiological evidence in behaving human subjects on the mode of operation of the primary motor cortex during coordinated movements of the forelimb. We approached this problem by studying a pointing movement involving the shoulder, elbow, wrist, and index finger as follows. Focal transcranial magnetic stimulation (TMS) was used to measure the input-output (I/O) curves—a measure of the corticospinal pathway excitability—of proximal (anterior deltoid, AD, and triceps brachii, TB) and distal muscles (extensor carpi radialis, ECR, and first dorsal interosseus, 1DI) during isolated contraction of one of these muscles or during selective co-activation with other muscles involved in pointing. Compared to an isolated contraction of the ECR, the plateau-level of the ECR sigmoid I/O curve increased markedly during co-activation with the AD while pointing. In contrast, the I/O curve of AD was not influenced by activation of the more distal muscles involved in pointing. Moreover, the 1DI I/O curve was not influenced by activation of the more proximal muscles. Three arguments argue for a cortical site of facilitation of ECR motor potentials. First, ECR motor potentials evoked by a near threshold TMS stimulus were facilitated when the AD and ECR were co-activated during pointing but not those in response to a near threshold anodal electrical stimulus. Second, the ECR H reflex was not found to be task dependent, indicating that the recruitment gain of the ECR α-motoneuron pool did not differ between tasks. Finally, in comparison with an isolated ECR contraction, intracortical inhibition tested at the ECR cortical site was decreased during pointing. These results suggest that activation of shoulder, elbow, and wrist muscles involved in pointing appear to involve, at least in part, common motor cortical circuits. In contrast, at least in the pointing task, the motor cortical circuits involved in activation of the 1DI appear to act independently.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3