Long-Term Modulation of Respiratory Network Activity Following Anoxia In Vitro

Author:

Blitz Dawn M.1,Ramirez Jan-Marino1

Affiliation:

1. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637

Abstract

Neural networks that produce rhythmic behaviors require flexibility to respond to changes in the internal and external state of the animal. It is important to not only understand how a network responds during such perturbations but also how the network recovers. For example, the respiratory network needs to respond to and recover from temporary changes in oxygen level that can occur during sleep, exercise, and respiratory disorders. During a temporary decrease in oxygen level, there is an increase in respiratory frequency followed by a depression that can lead to complete apnea. Here we used a mouse brain stem slice preparation as a model system to examine the recovery of respiratory network activity after brief episodes of anoxia. We found the respiratory network recovers from a single anoxic episode with a transient increase in fictive respiratory frequency. Although repetitive anoxia does not elicit a greater frequency increase, it does elicit a longer lasting frequency increase persisting ≤90 min. Thus there is a centrally mediated long-lasting influence on the respiratory network elicited by decreased oxygen levels. This modulation occurs as a prolonged facilitation of fictive respiratory frequency after brief repetitive but not single anoxic exposure. These data are important to consider in the context of disorders such as sleep apnea in which brief periodic anoxic episodes are experienced.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3