Affiliation:
1. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
Abstract
Neural networks that produce rhythmic behaviors require flexibility to respond to changes in the internal and external state of the animal. It is important to not only understand how a network responds during such perturbations but also how the network recovers. For example, the respiratory network needs to respond to and recover from temporary changes in oxygen level that can occur during sleep, exercise, and respiratory disorders. During a temporary decrease in oxygen level, there is an increase in respiratory frequency followed by a depression that can lead to complete apnea. Here we used a mouse brain stem slice preparation as a model system to examine the recovery of respiratory network activity after brief episodes of anoxia. We found the respiratory network recovers from a single anoxic episode with a transient increase in fictive respiratory frequency. Although repetitive anoxia does not elicit a greater frequency increase, it does elicit a longer lasting frequency increase persisting ≤90 min. Thus there is a centrally mediated long-lasting influence on the respiratory network elicited by decreased oxygen levels. This modulation occurs as a prolonged facilitation of fictive respiratory frequency after brief repetitive but not single anoxic exposure. These data are important to consider in the context of disorders such as sleep apnea in which brief periodic anoxic episodes are experienced.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献