Effect of Tactile Inputs on Thalamic Responses to Noxious Colorectal Distension in Rat

Author:

Zhang Hong-Qi1,Al-Chaer Elie D.2,Willis William D.3

Affiliation:

1. School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; and Departments of

2. Internal Medicine and

3. Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, Texas 77555

Abstract

Recent discoveries of visceral nociceptive inputs sharing the classical tactile pathway in the dorsal-column medial lemniscus system have opened a new venue for the investigation of somatovisceral interactions. The current study was designed to determine whether somatic innocuous inputs modulate visceral nociceptive transmission at the thalamic level. The investigation was carried out by means of extracellular single-unit recordings in the ventroposterior lateral nucleus of the thalamus in rats anesthetized with pentobarbital. Noxious visceral stimulation was achieved by reproducible colorectal distension (CRD, 20–80 mmHg) with a balloon catheter. Tactile stimulation was delivered by means of a feedback-controlled mechanical stimulator. The response of the neurons to CRD was compared before and after the conditioning procedure by giving tactile stimulation either immediately before CRD or overlapping it. Twenty-five ventroposterior lateral (VPL) thalamic neurons were found among numerous tactile-only neurons to have convergent inputs from both tactile and visceral sources. Their responses to CRD were excitatory (19), inhibitory (4), or bimodal. When cutaneous tactile stimuli were delivered before CRD, the responses were reduced in 18 cases. The reduction, however, was usually short-lasting, immediately following tactile stimulation and could not be enhanced by a prolonged conditioning procedure. It was unlikely to be attributable to neuronal habituation as the inverted procedure, CRD stimulation before tactile, often produced the opposite effect, that is, an enhanced response to skin stimulation. Repeated CRD could bring about sensitization of the responses of thalamic neurons as manifested by increased spontaneous discharge, lowered response threshold, and increased response level. Under such circumstances, the original effect of tactile stimulation on CRD responses could be weakened. In conclusion, tactile stimulation may in most circumstances inhibit thalamic neuronal responses to visceral nociceptive input produced by CRD. However, the effect appears to be mild and short-lasting at the individual neuronal level in the VPL thalamus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3