Vestibuloocular Reflex Dynamics During High-Frequency and High-Acceleration Rotations of the Head on Body in Rhesus Monkey

Author:

Huterer Marko1,Cullen Kathleen E.1

Affiliation:

1. Aerospace Medical Research Unit, McGill University, Montreal, Quebec H3G 1Y6, Canada

Abstract

For frequencies >10 Hz, the vestibuloocular reflex (VOR) has been primarily investigated during passive rotations of the head on the body in humans. These prior studies suggest that eye movements lag head movements, as predicted by a 7-ms delay in the VOR reflex pathways. However, Minor and colleagues recently applied whole-body rotations of frequencies ≤15 Hz in monkeys and found that eye movements were nearly in phase with head motion across all frequencies. The goal of the present study was to determine whether VOR response dynamics actually differ significantly for whole-body versus head-on-body rotations. To address this question, we evaluated the gain and phase of the VOR induced by high-frequency oscillations of the head on the body in monkeys by directly measuring both head and eye movements using the magnetic search coil technique. A torque motor was used to rotate the heads of three Rhesus monkeys over the frequency range 5–25 Hz. Peak head velocity was held constant, first at ±50°/s and then ±100°/s. The VOR was found to be essentially compensatory across all frequencies; gains were near unity (1.1 at 5 Hz vs. 1.2 at 25 Hz), and phase lag increased only slightly with frequency (from 2° at 5 Hz to 11° at 25 Hz, a marked contrast to the 63° lag at 25 Hz predicted by a 7-ms VOR latency). Furthermore, VOR response dynamics were comparable in darkness and when viewing a target and did not vary with peak velocity. Although monkeys offered less resistance to the initial cycles of applied head motion, the gain and phase of the VOR did not vary for early versus late cycles, suggesting that an efference copy of the motor command to the neck musculature did not alter VOR response dynamics. In addition, VOR dynamics were also probed by applying transient head perturbations with much greater accelerations (peak acceleration >15,000°/s2) than have been previously employed. The VOR latency was between 5 and 6 ms, and mean gain was close to unity for two of the three animals tested. A simple linear model well described the VOR responses elicited by sinusoidal and transient head on body rotations. We conclude that the VOR is compensatory over a wide frequency range in monkeys and has similar response dynamics during passive rotation of the head on body as during passive rotation of the whole body in space.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-term dance training modifies eye-head coordination in response to passive head impulse;Journal of Neurophysiology;2023-10-01

2. The vergence-mediated gain increase: Physiology and clinical relevance;Journal of Vestibular Research;2023-06-19

3. Nonquantal transmission at the vestibular hair cell–calyx synapse: K LV currents modulate fast electrical and slow K + potentials;Proceedings of the National Academy of Sciences;2023-01-03

4. Vestibular motor control;Motor System Disorders, Part I: Normal Physiology and Function and Neuromuscular Disorders;2023

5. Signal Transmission by Auditory and Vestibular Hair Cells;Recent Advances in Audiological and Vestibular Research;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3