Pharmacology of Nicotinic Receptors in PreBötzinger Complex That Mediate Modulation of Respiratory Pattern

Author:

Shao Xuesi M.1,Feldman Jack L.1

Affiliation:

1. Department of Neurobiology, UCLA School of Medicine, Los Angeles, California 90095-1763

Abstract

Nicotine regulates respiratory pattern by modulating excitatory neurotransmission affecting inspiratory neurons within the preBötzinger Complex (preBötC). The nicotinic acetylcholine receptor (nAChR) subtypes mediating these effects are unknown. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve (XIIn) and patch-clamped inspiratory neurons in the preBötC simultaneously. The α7 nAChR antagonists α-bungarotoxin or methyllycaconitine (MLA) had little effect on the actions of low concentrations of nicotine (0.5 μM), which included an increase in respiratory frequency; a decrease in amplitude of XIIn inspiratory bursts; a tonic inward current associated with an increase in membrane noise; an increase in the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), and; a decrease in the amplitude of inspiratory drive current in voltage-clamped preBötC inspiratory neurons. These nicotinic actions were completely reversed by dihydro-β-erythroidine (DH-β-E) or hexamethonium and reduced by d-tubocurarine. Comparable concentrations of RJR-2403 (0.5–1 μM), an agonist selective for α4β2 nAChRs, increased respiratory frequency to 186% and decreased the amplitude of XIIn inspiratory bursts to 83% of baseline. In voltage-clamped preBötC inspiratory (including pacemaker) neurons, RJR-2403 induced a tonic inward current of −15.2 pA associated with an increase in membrane noise, increased the frequency to 157% and amplitude to 106% of spontaneous EPSCs, and decreased the amplitude of inspiratory drive current to 80% of baseline. MLA had little effect on RJR-2403 actions, while DH-β-E completely reversed them. These results suggest that the predominant subtype of nAChRs in preBötC in neonatal rats that mediates the modulation of respiratory pattern by low concentrations of nicotine is an α4β2 combination and not an α7 subunit homomer. We do not exclude the possibility that co-assembly of α4β2 with other subunits or other nAChR subtypes are also expressed in preBötC neurons. The parallel changes in the cellular and systems level responses induced by different nicotinic agonists and antagonists support the idea that modulation of excitatory neurotransmission affecting preBötC inspiratory neurons is a mechanism underlying the cholinergic regulation of respiratory pattern ( Shao and Feldman 2001 ). This study provides a useful model system for evaluating potential therapeutic cholinergic agents for their respiratory effects and side effects.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3