Modulatory Effect of Cortical Activation on the Lemniscal Auditory Thalamus of the Guinea Pig

Author:

He Jufang12,Yu Yan-Qin1,Xiong Ying1,Hashikawa Tsutomu2,Chan Ying-Shing3

Affiliation:

1. Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;

2. Laboratory for Neural Architecture, Brain Science Institute, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan; and

3. Department of Physiology, The University of Hong Kong, Sassoon Road, Hong Kong

Abstract

In the present study, we investigated the point-to-point modulatory effects from the auditory cortex to the thalamus in the guinea pig. Corticofugal modulation on thalamic neurons was studied by electrical activation of the auditory cortex. The modulation effect was sampled along the frontal or sagittal planes of the auditory thalamus, focusing on the ventral division (MGv) of the medial geniculate body (MGB). Electrical activation was targeted at the anterior and dorsocaudal auditory fields, to which the MGv projects and from which it assumptively receives reciprocal projections. Of the 101 MGv neurons examined by activation of the auditory cortex through passing pulse trains of 100–200 μA current into one after another of the three implanted electrodes (101 neurons × 3 stimulation sites = 303 cases), 208 cases showed a facilitatory effect, 85 showed no effect, and only 10 cases (7 neurons) showed an inhibitory effect. Among the cases of facilitation, 63 cases showed a facilitatory effect >100%, and 145 cases showed a facilitatory effect from 20–100%. The corticofugal modulatory effect on the MGv of the guinea pig showed a widespread, strong facilitatory effect and very little inhibitory effect. The MGv neurons showed the greatest facilitations to stimulation by the cortical sites, with the closest correspondence in BF. Six of seven neurons showed an elevation of the rate-frequency functions when the auditory cortex was activated. The comparative results of the corticofugal modulatory effects on the MGv of the guinea pig and the cat, together with anatomical findings, hint that the strong facilitatory effect is generated through the strong corticothalamic direct connection and that the weak inhibitory effect might be mainly generated via the interneurons of the MGv. The temporal firing pattern of neuronal response to auditory stimulus was also modulated by cortical stimulation. The mean first-spike latency increased significantly from 15.7 ± 5.3 ms with only noise-burst stimulus to 18.3 ± 4.9 ms ( n = 5, P < 0.01, paired t-test), while the auditory cortex was activated with a train of 10 pulses. Taking these results together with those of previous experiments conducted on the cat, we speculate that the relatively weaker inhibitory effect compared with that in the cat could be due to the smaller number of interneurons in the guinea pig MGB. The corticofugal modulation of the firing pattern of the thalamic neurons might enable single neurons to encode more auditory information using not only the firing rate but also the firing pattern.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3