Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat

Author:

Calvin W. H.,Sypert G. W.

Abstract

1. Intracellular recordings were made from an estimated 500 neurons in the sensorimotor cortex of barbiturate-anesthetized cats. Of those which were antidromically identified from the medullary pyramids, 70 were selected which also exhibited steady repetitive firing to steps of current injected through the recording electrode; 81% were "fast" (conduction velocity greater than 20 m/s) and 19% were "slow". 2. As shown by earlier workers, the spike duration is a function of conduction velocity; a spike duration of 1.0 ms is the dividing line between fast and slow. 3. Of the 57 fast pyramidal tract neurons (PTNS), 14 exhibited double spikes during otherwise rhythmic firing patterns to a step of injected current. These very short interspike intervals (usually 1.5-2.5 ms) were first seen interspersed in a rhythmic discharge (e.g., 50-ms intervals) but, with further increases in current strength, would come to dominate the firing pattern; e.g., double spikes every 40 ms. Further increases in current would typically shorten only the long intervals; e.g., 40-30 ms, but some fast PTNS developed triple spikes, etc. 4. The extra spike appears to arise from a large hump which follows most spikes in fast PTNS; while this humplike "depolarising after-potential" can also be seen in slow PTNS, it is small. Extra spikes were seen only in fast PTNS with large postspike humps; in perhaps half of the fast PTNS, extra spikes probably contributed to "adaptation." 5. Slow PTNS often had frequency-current curves which were not repeatable; a "hysteresis" phenomenon could often be seen, where the proportionality constant relating current to firing rate decreased following high firing rates. 6.The B spike was distinguishable from the A spike in differentiated antidromic spikes in 77% of the slow PTNS, in only 14% of the fast PTNS which later exhibited double spikes during current-induced repetitive firing, and in 53% of the other fast PTNS. 7. The antidromic spike heights of doublet PTNS were not significantly different from those of other repetitively firing PTNS.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3