Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine

Author:

Kuba K.,Nishi S.

Abstract

Superfusion of the isolated sympathetic ganglion of the bullfrog with a caffeine-containing (1-6 mM) solution caused in many cells an initial slow hyperpolarization which was followed by a subliminal depolarization interruped by rhythmic hyperpolarizations. A hyperpolarization, similar to one of the rhythmic hyperpolarizations, could be triggered by an action potential in the presence of caffeine. The action potential itself was not markedly affected by caffeine except for its afterhyperpolarization which was prolonged. All these caffeine-induced hyperpolarizations were associated with a marked reduction of the membrane resistance, their amplitude was increased in a K+-free solution and decreased in a high-K+ solution, and their polarity was reversed at the same level at which the afterhyperpolarization was also inverted. This reversal level was not altered by omission of Na+ or C1- from the external medium. These hyperpolarizations were reversibly abolished by depletion of external Ca2+ or replacement of external Ca2+ by Mg2+. Excess of external Ca2+ caused a shortening of the interval between rhythmic hyperpolarizations. Furthermore, iontophoretic injection of EDTA into the cytoplasm markedly depressed the initial caffeine hyperpolarizatin and abolished both the rhythmic and evoked caffeine hyperpolarizations. The caffeine-induced depolarization was not affected by omission of external Cl-. It was decreased in a Na+-free medium, but completely eliminated by omission of both Na+ and Ca2+ from the external medium. Tetrodotoxin did not impair the production of the initial and the rhythmic hyperpolarizations. A strong depolarizing pulse could evoke a typical hyperpolarizing response in the presence of this compound. Dibutyryl cyclic AMP, d-tubocurarine, atropine, and phenoxybenzamine were without effect on the caffeine-induced hyperpolarizations and depolarization. It was concluded that each caffeine-induced hyperpolarization is the result of an increased K+ permeability, which is probably caused by a rise in the internal Ca2+ concentration. It was also concluded that the caffeine-induced depolarization is due to an increased membrane permeability to Ca2+ and Na+.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3-D geometry and irregular connectivity dictate neuronal firing in frequency domain and synchronization;Biomaterials;2019-03

2. Calcium signaling in neocortical development;Developmental Neurobiology;2015-02-18

3. Biochemistry of calcium oscillations;Biochemical and Biophysical Research Communications;2010-05

4. Calcium Oscillations in Neurons;Ciba Foundation Symposium 188 - Calcium Waves, Gradients and Oscillations;2007-09-28

5. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons;Physiological Reviews;2005-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3