Abstract
Superfusion of the isolated sympathetic ganglion of the bullfrog with a caffeine-containing (1-6 mM) solution caused in many cells an initial slow hyperpolarization which was followed by a subliminal depolarization interruped by rhythmic hyperpolarizations. A hyperpolarization, similar to one of the rhythmic hyperpolarizations, could be triggered by an action potential in the presence of caffeine. The action potential itself was not markedly affected by caffeine except for its afterhyperpolarization which was prolonged. All these caffeine-induced hyperpolarizations were associated with a marked reduction of the membrane resistance, their amplitude was increased in a K+-free solution and decreased in a high-K+ solution, and their polarity was reversed at the same level at which the afterhyperpolarization was also inverted. This reversal level was not altered by omission of Na+ or C1- from the external medium. These hyperpolarizations were reversibly abolished by depletion of external Ca2+ or replacement of external Ca2+ by Mg2+. Excess of external Ca2+ caused a shortening of the interval between rhythmic hyperpolarizations. Furthermore, iontophoretic injection of EDTA into the cytoplasm markedly depressed the initial caffeine hyperpolarizatin and abolished both the rhythmic and evoked caffeine hyperpolarizations. The caffeine-induced depolarization was not affected by omission of external Cl-. It was decreased in a Na+-free medium, but completely eliminated by omission of both Na+ and Ca2+ from the external medium. Tetrodotoxin did not impair the production of the initial and the rhythmic hyperpolarizations. A strong depolarizing pulse could evoke a typical hyperpolarizing response in the presence of this compound. Dibutyryl cyclic AMP, d-tubocurarine, atropine, and phenoxybenzamine were without effect on the caffeine-induced hyperpolarizations and depolarization. It was concluded that each caffeine-induced hyperpolarization is the result of an increased K+ permeability, which is probably caused by a rise in the internal Ca2+ concentration. It was also concluded that the caffeine-induced depolarization is due to an increased membrane permeability to Ca2+ and Na+.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献