Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations

Author:

Fernandez C.,Goldberg J. M.

Abstract

1. The directional selectivity of peripheral otolith neurons was studied in the barbiturate-anesthetized squirrel monkey (Saimiri sciureus). Each unit's most sensitive axis was characterized by a functional polarization vector. The direction of a centrifugal force was varied with respect to the vector and to the macular plane. The neurons respond in an excitatory manner to shearing forces orthogonally disposed to the vector. The sensitivity to orthogonal shears was usually 10-15% of the sensitivity to parallel shearing forces. There was no significant response to orthogonal compressions, nor did compressions modify the response to shearing forces. 2. Force-response functions were obtained in the stimulus range of +/- 4.92 g. Forces were directed parallel to each unit's polarization vector. The functions are sigmoid shaped and possess both inhibitory and excitatory plateaus. The presumed physiological range of +/-1 g is represented in the lower (concave upward) portion of the function and has a dynamic range, expressed in terms of response magnitude, amounting to 20-40% of the potential dynamic range of the neuron. 3. There was considerable variation among units in their +/- 4.92 g force-response curves. The salient features of the functions are described by three factors, tentatively identified as a transduction gain, a receptor bias, and a mechanical gain. Both the resting discharge (do) and the +/-1 g sensitivity (so) vary in the same direction with changes in the factors related to transduction gain and receptor bias. It is shown that this covariation provides a quantitatively precise explanation for the positive relation between do and so.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3