Adenosine Acting on A1 Receptors Protects NO-Triggered Rebound Potentiation and LTP in Rat Hippocampal Slices

Author:

Bon Christelle L. M.1,Garthwaite John1

Affiliation:

1. The Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom

Abstract

Exposure of hippocampal slices to nitric oxide (NO) results in a depression of CA1 synaptic transmission. Under 0.2-Hz stimulation, washout of NO leads to a persistent potentiation that depends on N-methyl-d-aspartate (NMDA) receptors and endogenous NO formation and that occludes tetanus-induced long-term potentiation (LTP). The experiments were initially aimed at determining the relationship between the NO-induced synaptic depression and rebound potentiation. The adenosine A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) partially inhibited the depression produced by the NO donor diethylamine NONOate (300 μM). It also led to a complete block of both the rebound potentiation and the subsequent tetanus-induced LTP. LTP was preserved in the presence of DPCPX if the stimulation frequency was reduced to 0.033 Hz or if the NO application was omitted. The NO-triggered rebound potentiation was restored if the experiment (DPCPX followed by exogenous NO) was conducted in the presence of an NMDA antagonist. The restored potentiation was completely blocked by the NO synthase inhibitor,l-nitroarginine. It is concluded that the NO-induced depression is partially mediated by increased release of endogenous adenosine acting on A1 receptors. Moreover, tonic A1 receptor activation by adenosine protects LTP and the rebound potentiation from being disabled by untimely NMDA receptor activity. Hence, the NO-induced depression and rebound potentiation are linked in the sense that the depression helps to preserve the capacity of the synapses to undergo potentiation. Finally, the results give the first example of exogenous NO eliciting an enduring potentiation of hippocampal synaptic transmission that is dependent on endogenous NO formation, but not on NMDA receptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3