Effects of Prolactin on Ionic Membrane Conductances in the Human Malignant Astrocytoma Cell Line U87-MG

Author:

Ducret Thomas1,Vacher Anne-Marie1,Vacher Pierre1

Affiliation:

1. Institut National de la Santé Et de la Recherche Médicale EMI 0347 “Signalisation et Mécanismes Moléculaires de l'Apoptose,” and Laboratoire de Physiologie et Physiopathologie de la Signalisation Cellulaire, Centre National de le Recherche Scientifique UMR 5543, Université de Bordeaux 2, 33076 Bordeaux Cedex, France

Abstract

Prolactin (PRL) is involved in numerous biological processes in peripheral tissues and the brain. Although numerous studies have been conducted to elucidate the signal transduction pathways associated with the PRL receptor, very few have examined the role of ion conductances in PRL actions. We used the patch-clamp technique in “whole cell” configuration and microspectrofluorimetry to investigate the effects of PRL on membrane ion conductances in the U87-MG human malignant astrocytoma cell line, which naturally expresses the PRL receptor. We found that a physiological concentration (4 nM) of PRL exerted a biphasic action on membrane conductances. First, PRL activated a Ca2+-dependent K+current that was sensitive to CTX and TEA. This current depended on PRL-induced Ca2+mobilization, through a JAK2-dependent pathway from a thapsigargin- and 2-APB-sensitive Ca2+pool. Second, PRL also activated an inwardly directed current, mainly due to the stimulation of calcium influx via nickel- and 2-APB-sensitive calcium channels. Both phases resulted in membrane hyperpolarizations, mainly through the activation of Ca2+-dependent K+channels. As shown by combined experiments (electrophysiology and microspectrofluorimetry), the PRL-induced Ca2+influx increased with cell membrane hyperpolarization and conversely decreased with cell membrane depolarization. Thus PRL-induced membrane hyperpolarizations facilitated Ca2+influx through voltage-independent Ca2+channels. Finally, PRL also activated a DIDS-sensitive Cl-current, which may participate in the PRL-induced hyperpolarization. These PRL-induced conductance activations are probably related to the PRL proliferative effect we have already described in U87-MG cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3