Cannabinoids Reveal Separate Controls for Whisking Amplitude and Timing in Rats

Author:

Pietr Maciej Dominik1,Knutsen Per Magne12,Shore David I.3,Ahissar Ehud1,Vogel Zvi14

Affiliation:

1. Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel;

2. Department of Physics, University of California, La Jolla, California;

3. Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada; and

4. The Dr. Miriam and Sheldon Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract

Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R). Systemic administration of CB1R agonist Δ9-tetrahydrocannabinol (Δ9-THC) reduced whisking spectral power across all tested doses (1.25–5 mg/kg), whereas whisking frequency was affected at only very high doses (5 mg/kg). Concomitantly, whisking amplitude and velocity were significantly reduced in a dose-dependent manner (25–43 and 26–50%, respectively), whereas cycle duration and bilateral synchrony were hardly affected (3–16 and 3–9%, respectively). Preadministration of CB1R antagonist SR141716A blocked Δ9-THC–induced kinematic alterations of whisking, and when administered alone, increased whisking amplitude and velocity but affected neither cycle duration nor synchrony. These findings indicate that whisking amplitude and timing are controlled by separate channels and that endocannabinoids modulate amplitude control channels.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3