Rapid Olfactory Processing Implicates Subcortical Control of an Olfactomotor System

Author:

Johnson Bradley N.1,Mainland Joel D.2,Sobel Noam123

Affiliation:

1. Joint Graduate Program in Bioengineering, University of California, Berkeley, California 94720

2. Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720

3. Department of Psychology, University of California, Berkeley, California 94720

Abstract

Sniffs are modulated in response to odor content. Higher concentrations of odor induce lesser-volume sniffs. This phenomenon implicates a neural feedback mechanism that measures sensory input (odor concentration) and modulates motor output (sniffing) accordingly. Here we used air-dilution olfactometry to probe the time course of this olfactomotor mechanism. A stainless-steel computer-controlled olfactometer, equipped with mass flow controllers, temperature and humidity control, and on-line photo-ionization detection, was coupled to a highly sensitive pneumatotachograph that measured nasal flow. The olfactometer was used to generate four ascending concentrations of the odorants propionic acid and phenethyl alcohol. Sniff volume was inversely related to odor concentration ( P > 0.0001). Sniffs were uniform and concentration independent for the initial 150 ms but acquired a concentration-dependent flowrate as early as 160 ms following sniff onset for propionic acid ( P > 0.05) and 260 ms for phenethyl alcohol ( P > 0.05). Considering that odorant transduction takes around 150 ms and odorant-induced cortical evoked potentials have latencies of around 300 ms, the rapid motor adjustments measured here suggest that olfactomotor sniff feedback control is subcortical and may rely on neural mechanisms similar to those that modulate eye movements to accommodate vision and ear movements to accommodate audition.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3