When is Vestibular Information Important During Walking?

Author:

Bent Leah R.,Inglis J. Timothy,McFadyen Bradford J.

Abstract

Locomotion relies on vision, somatosensory input, and vestibular information. Both vision and somatosensory signals have been shown to be phase dependently modulated during locomotion; however, the regulation of vestibular information has not been investigated in humans. By delivering galvanic vestibular stimulation (GVS) to subjects at either heel contact, mid-stance, or toe-off, it was possible to investigate when vestibular information was important during the gait cycle. The results indicated a difference in the vestibular regulation of upper versus lower body control. Upper body responses to GVS applied at different times did not differ in magnitude for the head ( P = 0.2383), trunk ( P = 0.1473), or pelvis ( P = 0.1732) showing a similar dependence on vestibular information for upper body alignment across the gait cycle. In contrast, foot placement was dependent on the time when stimulation was delivered. Changes in foot placement were significantly larger at heel contact (during the double support phase) than when stimulation was delivered at mid-stance (in the single support phase of the gait cycle; P = 0.0193). These latter results demonstrate, for the first time, evidence of phase-dependent modulation of vestibular information during human walking.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference43 articles.

1. Vestibular contributions across the execution of a voluntary forward step

2. Bent LR, Inglis JT and McFadyen BJ. When is vestibular information important during walking? 16th International Society for Posture and Gait Research Conference, Sydney, Australia, 2003.

3. Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait

4. Visual-vestibular interactions in postural control during the execution of a dynamic task

5. Bent LR, McFadyen BJ, and Inglis JT. Is the use of vestibular information weighted differently across the initiation of walking? Exp Brain Res In press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3