Impact of Heterogeneous Perisomatic IPSC Populations on Pyramidal Cell Firing Rates

Author:

Aradi Ildiko1,Santhakumar Vijayalakshmi1,Soltesz Ivan1

Affiliation:

1. Department of Anatomy and Neurobiology, University of California, Irvine, California, 92697-1280

Abstract

Previous computational modeling studies suggested a set of rules underlying the modulation of principal cell firing rates by heterogeneity in the synaptic parameters (peak amplitude and decay kinetics) of populations of GABAergic inputs. Here we performed dynamic clamp experiments in CA1 hippocampal pyramidal cells to test these ideas in biological neurons. In agreement with the simulation studies, the effects of increasing the event-to-event variance in a population of perisomatically injected inhibitory postsynaptic current (IPSC) peak conductances caused either an increase, decrease, or no change in the firing rates of CA1 pyramidal cells depending on the mean around which the scatter was introduced, the degree of the scatter, the depolarization that the pyramidal cell received, and the IPSC reversal potential. In contrast to CA1 pyramidal cells, both model and biological CA3 pyramidal cells responded with bursts of action potentials to sudden, step-wise alterations in input heterogeneity. In addition, injections of 40-Hz IPSC conductances together with θ-modulated depolarizing current inputs to CA1 pyramidal cells demonstrated that the principles underlying the modulation of pyramidal cell excitability by heterogeneous IPSC populations also apply during membrane potential oscillations. Taken together, these experimental results and the computational modeling data show the existence of simple rules governing the interactions of heterogeneous interneuronal inputs and principal cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3