The asynchronous state's relation to large-scale potentials in cortex

Author:

Alishbayli A.12ORCID,Tichelaar J. G.13,Gorska U.145,Cohen M. X.63,Englitz B.1ORCID

Affiliation:

1. Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

2. Tactile Perception and Learning Laboratory, International School for Advanced Studies, Trieste, Italy

3. Radboud University Medical Center, Nijmegen, The Netherlands

4. Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland

5. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

6. Department of Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

Abstract

Understanding the relation between large-scale potentials (M/EEG) and their underlying neural activity can improve the precision of research and clinical diagnosis. Recent insights into cortical dynamics highlighted a state of strongly reduced spike count correlations, termed the asynchronous state (AS). The AS has received considerable attention from experimenters and theorists alike, regarding its implications for cortical dynamics and coding of information. However, how reconcilable are these vanishing correlations in the AS with large-scale potentials such as M/EEG observed in most experiments? Typically the latter are assumed to be based on underlying correlations in activity, in particular between subthreshold potentials. We survey the occurrence of the AS across brain states, regions, and layers and argue for a reconciliation of this seeming disparity: large-scale potentials are either observed, first, at transitions between cortical activity states, which entail transient changes in population firing rate, as well as during the AS, and, second, on the basis of sufficiently large, asynchronous populations that only need to exhibit weak correlations in activity. Cells with no or little spiking activity can contribute to large-scale potentials via their subthreshold currents, while they do not contribute to the estimation of spiking correlations, defining the AS. Furthermore, third, the AS occurs only within particular cortical regions and layers associated with the currently selected modality, allowing for correlations at other times and between other areas and layers.

Funder

EC | European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Narodowe Centrum Nauki

European Commission

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3