Modulation of Glutamatergic Transmission by Bergmann Glial Cells in Rat Cerebellum In Situ

Author:

Bordey Angélique1,Sontheimer Harald1

Affiliation:

1. Civitan International Research Center and Department of Neurobiology, The University of Alabama, Birmingham, Alabama 35294

Abstract

We obtained patch-clamp recordings from neuron-glial cell pairs in cerebellar brain slices to examine the contribution of glutamate (Glu) uptake by Bergmann glial cells to shaping excitatory postsynaptic currents (EPSCs) at the parallel fiber to Purkinje cell synapse. We show that electrical stimulation of parallel fibers not only activates EPSCs in Purkinje cells but also activates inward currents in antigenically identified Bergmann glial cells that invest Purkinje cell synapse with their processes. The inward current is partially due to 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX)- and 2-amino-5-phosphonopentanoic acid (AP5)-sensitive ionotropic Glu receptors, but ≥70% of the current was mediated byd,l-threo-beta-hydroxyaspartate (THA)-sensitive Glu transporters. Glu inward currents were completely and reversibly inhibited by depolarization of Bergmann glial cells to positive membrane potentials allowing biophysical inhibition of Glu uptake into a single glial cell. Inhibition of Glu transport into Bergmann glial cells by voltage-clamping the cell to depolarized potentials caused a reversible increase in spontaneous EPSC frequency in the Purkinje cell. This increase could also be achieved by pharmacological inhibition of Glu transport with the Glu transport inhibitor THA, suggesting that inhibition of Glu uptake into Bergmann glial cells is responsible for the modulation of postsynaptic EPSCs. THA modulation of spontaneous EPSCs could only be observed in the absence of TTX, suggesting primarily a presynaptic effect. Taken together these data suggest that glial Glu uptake can profoundly affect excitatory transmission in the cerebellum, most likely by regulating presynaptic glutamate release.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3