D2-Like Dopamine Receptors Modulate SKCaChannel Function in Subthalamic Nucleus Neurons Through Inhibition of Cav2.2 Channels

Author:

Ramanathan Sankari,Tkatch Tatiana,Atherton Jeremy F.,Wilson Charles J.,Bevan Mark D.

Abstract

The activity patterns of subthalamic nucleus (STN) neurons are intimately related to motor function/dysfunction and modulated directly by dopaminergic neurons that degenerate in Parkinson's disease (PD). To understand how dopamine and dopamine depletion influence the activity of the STN, the functions/signaling pathways/substrates of D2-like dopamine receptors were studied using patch-clamp recording. In rat brain slices, D2-like dopamine receptor activation depolarized STN neurons, increased the frequency/irregularity of their autonomous activity, and linearized/enhanced their firing in response to current injection. Activation of D2-like receptors in acutely isolated neurons reduced transient outward currents evoked by suprathreshold voltage steps. Modulation was inhibited by a D2-like receptor antagonist and occluded by voltage-dependent Ca2+(Cav) channel or small-conductance Ca2+-dependent K+(SKCa) channel blockers or Ca2+-free media. Because Cavchannels are targets of Gi/o-linked receptors, actions on step- and action potential waveform-evoked Cavchannel currents were studied. D2-like receptor activation reduced the conductance of Cav2.2 but not Cav1 channels. Modulation was mediated, in part, by direct binding of Gβγ subunits because it was attenuated by brief depolarization. D2and/or D3dopamine receptors may mediate modulation because a D4-selective agonist was ineffective and mRNA encoding D2and D3but not D4dopamine receptors was detectable. Brain slice recordings confirmed that SKCachannel-mediated action potential afterhyperpolarization was attenuated by D2-like dopamine receptor activation. Together, these data suggest that D2-like dopamine receptors potently modulate the negative feedback control of firing that is mediated by the functional coupling of Cav2.2 and SKCachannels in STN neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3