Modulation of Dorsal Spinocerebellar Responses to Limb Movement. II. Effect of Sensory Input

Author:

Bosco G.,Poppele R. E.

Abstract

Dorsal spinocerebellar tract (DSCT) neurons receive converging sensory inputs from muscle, skin, and joint receptors and their cerebellar projection is a product of the spinal sensory processing of movement-related information. We concluded earlier that DSCT activity relates to global rather than to local parameters of hindlimb postures and movement, specifically to a kinematic representation of the limb endpoint. The waveforms of principal components (PCs) derived from an ensemble of DSCT movement responses were found to correlate with either the waveform of the limb axis length or orientation trajectories. It was not clear, however, whether these global representations resulted from neural processing or from biomechanical factors. In this study, we perturbed the limb biomechanical factors by decoupling limb geometry from endpoint position during passively applied limb trajectories patterned after a step cycle. We used two types of perturbations: mechanical constraints that limited joint rotations and electrical stimulation of hindlimb muscles. We found that about half of the 89 cells studied showed statistically different response patterns during the perturbations. We compared the PCs of the altered responses with the PCs of the control responses, and found two basic results. With the joint constraints, >85% of the total variance in both control and changed responses was accounted for by the same five PCs that were also observed in the earlier study. The differences between altered and control responses could be fully accounted for by changes in the PC weighting, suggesting a modulation of global response components rather than an explicit representation of local parameters. With the muscle stimulation, only the first and third PCs were the same for the control and altered responses. The second PC was modified, and additional PCs were also required to account for the altered responses. This suggests that the stimulus parameters were specifically represented in the responses. The changes induced by both types of perturbation affected primarily the weighting or waveform of the second PC, which relates to the limb axis length trajectory. The results are consistent with the suggestion that information about limb orientation and length may be separately modulated.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3