Magnetoencephalography-based identification of functional connectivity network disruption following mild traumatic brain injury

Author:

Alhourani Ahmad1,Wozny Thomas A.1,Krishnaswamy Deepa2,Pathak Sudhir2,Walls Shawn A.3,Ghuman Avniel S.1245,Krieger Donald N.1,Okonkwo David O.1,Richardson R. Mark125,Niranjan Ajay1

Affiliation:

1. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;

2. Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;

3. University of Pittsburgh Medical Center Brain Mapping Center, Pittsburgh, Pennsylvania

4. Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;

5. Center for the Neural Basis of Cognition and University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; and

Abstract

Mild traumatic brain injury (mTBI) leads to long-term cognitive sequelae in a significant portion of patients. Disruption of normal neural communication across functional brain networks may explain the deficits in memory and attention observed after mTBI. In this study, we used magnetoencephalography (MEG) to examine functional connectivity during a resting state in a group of mTBI subjects ( n = 9) compared with age-matched control subjects ( n = 15). We adopted a data-driven, exploratory analysis in source space using phase locking value across different frequency bands. We observed a significant reduction in functional connectivity in band-specific networks in mTBI compared with control subjects. These networks spanned multiple cortical regions involved in the default mode network (DMN). The DMN is thought to subserve memory and attention during periods when an individual is not engaged in a specific task, and its disruption may lead to cognitive deficits after mTBI. We further applied graph theoretical analysis on the functional connectivity matrices. Our data suggest reduced local efficiency in different brain regions in mTBI patients. In conclusion, MEG can be a potential tool to investigate and detect network alterations in patients with mTBI. The value of MEG to reveal potential neurophysiological biomarkers for mTBI patients warrants further exploration.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3