Histamine Compartments of theDrosophilaBrain With an Estimate of the Quantum Content at the Photoreceptor Synapse

Author:

Borycz J. A.,Borycz J.,Kubów A.,Kostyleva R.,Meinertzhagen I. A.

Abstract

Reliable estimates of the quantum size in histaminergic neurons are not available. We have exploited two unusual opportunities in the fly's ( Drosophila melanogaster) visual system to make such determinations for histaminergic photoreceptor synapses: 1) the possibility to microdissect successively from whole fly heads freeze-dried in acetone: the compound eyes; the first optic neuropils, or lamina; and the rest of the brain; and 2) the uniform sheaves of lamina synaptic terminals of photoreceptors R1–R6. We used this organization to count scrupulously the numbers of 30-nm synaptic vesicles from electron micrographs of R1–R6 profiles, and from microdissections we determined the regional contents of histamine in the compound eye, lamina, and central brain. Total head histamine averages 1.98 ng of which 9% was lost after freeze-drying in acetone and a further 28% after the brain was microdissected. Of the remainder, 71% was in the eye and lamina. Assuming that histamine loss from the tissue occurred mostly by diffusion evenly distributed among all regions, the overall lamina content of the head would be 0.1935 ng before dissection. From published values for the volumes of the brain's compartments, the computed regional concentrations of histamine are highest in the lamina (4.35 mM) because of the terminals of R1–R6. The concentration in the retina is ∼13% that in the lamina, suggesting that most histamine is vesicular. There are ∼43,500 ± 7,400 (SD) synaptic vesicles per terminal and, if all histamine is allocated equally and exclusively among these, the vesicle contents would be 858 ± 304 × 10−21moles or ∼5,000 ± 1,800 (SD) molecules at an approximate concentration of 670 mM. These values are compared with the vesicle contents at synapses using acetylcholine and catecholamines.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3