Neural Responses to Free Field and Virtual Acoustic Stimulation in the Inferior Colliculus of the Guinea Pig

Author:

Behrend Oliver,Dickson Benjamin,Clarke Elizabeth,Jin Craig,Carlile Simon

Abstract

Virtual auditory space (VAS) stimuli based on outer ear transfer functions became increasingly important in spatial hearing research. However, few studies have investigated the match between responses of auditory neurons to VAS and free-field (FF) stimulation. This study validates acoustic spatial receptive fields (SRFs) of 183 individual midbrain units using both VAS and FF stimuli. The first-spike latency, which varied systematically across SRFs, was 14.9 ± 8.3 (SD) ms in FF, and 15.1 ± 8.3 ms in VAS. Spike-count-based SRFs measured 0–20 dB above the neural threshold covered on average 44.5 ± 18.0% of the recorded sphere in FF and 45.5 ± 18.7% in VAS. The average deviation of the centroid position of SRFs using FF and VAS stimuli was 7.4° azimuth and 3.3° elevation. The average spike rate remained unchanged. The SRF overlap recorded using FF and VAS stimuli (mean: 71.3 ± 12.6%) or repeated FF stimuli (70.2 ± 14.2%) was high and strongly correlated ( r = 0.96; P < 0.05). The SRF match observed with FF and VAS stimuli was not significantly altered over a range of stimulus levels (paired t-test P = 0.51; n = 6). Randomized VAS barely affected SRF sizes, centroids, or maximum spike count but decreased the average minimum response to 59% compared with sequential stimulation (paired t-test; P = 0.05; n = 26). SRF recordings in VAS excluding the acoustic distortions of the recording equipment differed from those in VAS incorporating the equipment (paired t-test P = 0.01; n = 5). In conclusion, neurophysiological recordings demonstrate that individualized VAS stimuli provided a good simulation of a FF environment.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3