Nitric oxide augments single persistent Na+ channel currents via the cGMP/PKG signaling pathway in Kenyon cells isolated from cricket mushroom bodies

Author:

Ikeda Mariko1,Yoshino Masami1

Affiliation:

1. Department of Biology, Tokyo Gakugei University, Tokyo, Japan

Abstract

The nitric oxide (NO)/cyclic GMP signaling pathway has been suggested to be important in the formation of olfactory memory in insects. However, the molecular targets of the NO signaling cascade in the central neurons associated with olfactory learning and memory have not been fully analyzed. In this study, we investigated the effects of NO donors on single voltage-dependent Na+ channels in intrinsic neurons, called Kenyon cells, in the mushroom bodies in the brain of the cricket. Step depolarization on cell-attached patch membranes induces single-channel currents with fast-activating and -inactivating brief openings at the beginning of the voltage steps followed by more persistently recurring brief openings all along the 150-ms pulses. Application of the NO donor S-nitrosoglutathione (GSNO) increased the number of channel openings of both types of single Na+ channels. This excitatory effect of GSNO on the activity of these Na+ channels was diminished by KT5823, an inhibitor of protein kinase G (PKG), indicating an involvement of PKG in the downstream pathway of NO. Application of KT5823 alone decreased the activity of the persistent Na+ channels without significant effects on the fast-inactivating Na+ channels. The membrane-permeable cGMP analog 8Br-cGMP increased the number of channel openings of both types of single Na+ channels, similar to the action of NO. Taken together, these results indicate that NO acts as a critical modulator of both fast-inactivating and persistent Na+ channels and that persistent Na+ channels are constantly upregulated by the endogenous cGMP/PKG signaling cascade. NEW & NOTEWORTHY This study clarified that nitric oxide (NO) increases the activity of both fast-inactivating and persistent Na+ channels via the cGMP/PKG signaling cascade in cricket Kenyon cells. The persistent Na+ channels are also found to be upregulated constantly by endogenous cGMP/PKG signaling. On the basis of the present results and the results of previous studies, we propose a hypothetical model explaining NO production and NO-dependent memory formation in cricket large Kenyon cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3