Glutamate and GABA concentrations following mild traumatic brain injury: a pilot study

Author:

Yasen Alia L.1,Smith Jolinda2,Christie Anita D.1

Affiliation:

1. Department of Human Physiology, University of Oregon, Eugene, Oregon

2. Robert and Beverly Lewis Center for NeuroImaging, University of Oregon, Eugene, Oregon

Abstract

Animal models of mild traumatic brain injury (mTBI) suggest that metabolic changes in the brain occur immediately after a mechanical injury to the head. Proton magnetic resonance spectroscopy (1H-MRS) can be used to determine relative concentrations of metabolites in vivo in the human brain. The purpose of this study was to determine concentrations of glutamate and GABA in the brain acutely after mTBI and throughout 2 mo of recovery. Concentrations of glutamate and GABA were obtained using 1H-MRS in nine individuals who had suffered an mTBI and nine control individuals in two brain regions of interest: the primary motor cortex (M1), and the dorsolateral prefrontal cortex (DLPFC), and at three different time points postinjury: 72 h, 2 wk, and 2 mo postinjury. There were no differences between groups in concentrations of glutamate or GABA, or the ratio of glutamate to GABA, in M1. In the DLPFC, glutamate concentration was lower in the mTBI group compared with controls at 72 h postinjury (d = 1.02), and GABA concentration was lower in the mTBI group at 72 h and 2 wk postinjury (d = 0.81 and d = 1.21, respectively). The ratio of glutamate to GABA in the DLPFC was higher in the mTBI group at 2 wk postinjury (d = 1.63). These results suggest that changes in glutamate and GABA concentrations in the brain may be region-specific and may depend on the amount of time that has elapsed postinjury. NEW & NOTEWORTHY To our knowledge, this is the first study to examine neurotransmitter concentrations in vivo at multiple time points throughout recovery from mild traumatic brain injury in humans.

Funder

Eugene and Clarissa Evonuk Graduate Fellowship

Center for the Study of Women in Society Graduate Student Grant

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3