Natural scenes in tactile texture

Author:

Manfredi Louise R.1,Saal Hannes P.1,Brown Kyler J.2,Zielinski Mark C.1,Dammann John F.1,Polashock Vicky S.3,Bensmaia Sliman J.12

Affiliation:

1. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois;

2. Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois; and

3. Kimberly-Clark Corporation, Roswell, Georgia

Abstract

Sensory systems are designed to extract behaviorally relevant information from the environment. In seeking to understand a sensory system, it is important to understand the environment within which it operates. In the present study, we seek to characterize the natural scenes of tactile texture perception. During tactile exploration complex high-frequency vibrations are elicited in the fingertip skin, and these vibrations are thought to carry information about the surface texture of manipulated objects. How these texture-elicited vibrations depend on surface microgeometry and on the biomechanical properties of the fingertip skin itself remains to be elucidated. Here we record skin vibrations, using a laser-Doppler vibrometer, as various textured surfaces are scanned across the finger. We find that the frequency composition of elicited vibrations is texture specific and highly repeatable. In fact, textures can be classified with high accuracy on the basis of the vibrations they elicit in the skin. As might be expected, some aspects of surface microgeometry are directly reflected in the skin vibrations. However, texture vibrations are also determined in part by fingerprint geometry. This mechanism enhances textural features that are too small to be resolved spatially, given the limited spatial resolution of the neural signal. We conclude that it is impossible to understand the neural basis of texture perception without first characterizing the skin vibrations that drive neural responses, given the complex dependence of skin vibrations on both surface microgeometry and fingertip biomechanics.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3