PM10-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-α

Author:

Jiménez L. A.1,Drost E. M.1,Gilmour P. S.1,Rahman I.1,Antonicelli F.1,Ritchie H.1,MacNee W.1,Donaldson K.2

Affiliation:

1. Edinburgh Lung and the Environment Group Initiative/Colt Laboratories, Department of Medical and Radiological Sciences, University of Edinburgh, Edinburgh EH8 9AG; and

2. School of Life Sciences, Napier University, Edinburgh EH10 5DT, Scotland, United Kingdom

Abstract

There is now considerable evidence for an association between the levels of particulate air pollution [particulate matter <10 μm in aerodynamic diameter (PM10)] and various adverse health endpoints. The release of proinflammatory mediators from PM10-exposed macrophages may be important in stimulating cytokine release from lung epithelial cells, thus amplifying the inflammatory response. A549 cells were treated with conditioned media from monocyte-derived macrophages stimulated with PM10, titanium dioxide (TiO2), or ultrafine TiO2. We demonstrate that only conditioned media from PM10-stimulated macrophages significantly increased nuclear factor-κB and activator protein-1 DNA binding, enhanced interleukin-8 (IL-8) mRNA levels as assessed by RT-PCR, and augmented IL-8 protein levels, over untreated controls. Furthermore, PM10-conditioned media also caused transactivation of IL-8 as determined by an IL-8-chloramphenicol acetyl transferase reporter. Analysis of these conditioned media revealed marked increases in tumor necrosis factor-α (TNF-α) and protein levels and enhanced chemotactic activity for neutrophils. Preincubation of conditioned media with TNF-α-neutralizing antibodies significantly reduced IL-8 production. These data suggest that PM10-activated macrophages may amplify the inflammatory response by enhancing IL-8 release from lung epithelial cells, in part, via elaboration of TNF-α.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3