Emerging role of angiogenesis in adaptive and maladaptive right ventricular remodeling in pulmonary hypertension

Author:

Frump Andrea L.1,Bonnet Sébastien2,de Jesus Perez Vinicio A.34,Lahm Tim156

Affiliation:

1. Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana

2. Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, Quebec, Canada

3. Division of Pulmonary/Critical Care, Stanford University School of Medicine, Stanford, California

4. Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California

5. Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana

6. Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.

Funder

American Heart Association (AHA)

U.S. Department of Veterans Affairs (VA)

Indiana Clinical and Translational Sciences Institute (CTSI)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3