Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1

Author:

Merker Marilyn P.,Audi Said H.,Bongard Robert D.,Lindemer Brian J.,Krenz Gary S.

Abstract

The objective of this study was to examine the impact of chronic hyperoxic exposure (95% O2for 48 h) on intact bovine pulmonary arterial endothelial cell redox metabolism of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ). DQ or durohydroquinone (DQH2) was added to normoxic or hyperoxia-exposed cells in air-saturated medium, and the medium DQ concentrations were measured over 30 min. DQ disappeared from the medium when DQ was added and appeared in the medium when DQH2was added, such that after ∼15 min, a steady-state DQ concentration was approached that was ∼4.5 times lower for the hyperoxia-exposed than the normoxic cells. The rate of DQ-mediated reduction of the cell membrane-impermeant redox indicator, potassium ferricyanide [Fe(CN)[Formula: see text]], was also approximately twofold faster for the hyperoxia-exposed cells. Inhibitor studies and mathematical modeling suggested that in both normoxic and hyperoxia-exposed cells, NAD(P)H:quinone oxidoreductase 1 (NQO1) was the dominant DQ reductase and mitochondrial electron transport complex III the dominant DQH2oxidase involved and that the difference between the net effects of the cells on DQ redox status could be attributed primarily to a twofold increase in the maximum NQO1-mediated DQ reduction rate in the hyperoxia-exposed cells. Accordingly, NQO1 protein and total activity were higher in hyperoxia-exposed than normoxic cell cytosolic fractions. One outcome for hyperoxia-exposed cells was enhanced protection from cell-mediated DQ redox cycling. This study demonstrates that exposure to chronic hyperoxia increases the capacity of pulmonary arterial endothelial cells to reduce DQ to DQH2via a hyperoxia-induced increase in NQO1 protein and total activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3