Synexin and GTP increase surfactant secretion in permeabilized alveolar type II cells

Author:

Chander Avinash1,Sen Namita1,Spitzer Alan R.1

Affiliation:

1. Division of Neonatology, Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Abstract

We have previously suggested that synexin (annexin VII), a Ca2+-dependent phospholipid binding protein, may have a role in surfactant secretion, since it promotes membrane fusion between isolated lamellar bodies (the surfactant-containing organelles) and plasma membranes. In this study, we investigated whether exogenous synexin can augment surfactant phosphatidylcholine (PC) secretion in synexin-deficient lung epithelial type II cells. Isolated rat type II cells were cultured for 20–22 h with [3H]choline to label cellular PC. The cells were then treated with β-escin, which forms pores in the cell membrane and releases cytoplasmic proteins including synexin. These cells, however, retained lamellar bodies. The permeabilized type II cells were evaluated for PC secretion during a 30-min incubation. Compared with PC secretion under basal conditions, the presence of Ca2+(up to 10 μM) did not increase PC secretion. In the presence of 1 μM Ca2+, synexin increased PC secretion in a concentration-dependent manner, which reached a maximum at ∼5 μg/ml synexin. The secretagogue effect of synexin was abolished when synexin was inactivated by heat treatment (30 min at 65°C) or by treatment with synexin antibodies. GTP or its nonhydrolyzable analog β:γ-imidoguanosine-5′-triphosphate also increased PC secretion in permeabilized type II cells. The PC secretion was further increased in an additive manner when a maximally effective concentration of synexin was added in the presence of 1 mM GTP, suggesting that GTP acts by a synexin-independent mechanism to increase membrane fusion. Thus our results support a direct role for synexin in surfactant secretion. Our study also suggests that membrane fusion during surfactant secretion may be mediated by two independent mechanisms.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3