Interleukin-10-mediated inhibition of free radical generation in macrophages

Author:

Dokka Sujatha1,Shi Xianglin2,Leonard Stephen2,Wang Liying2,Castranova Vincent2,Rojanasakul Yon1

Affiliation:

1. Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown 26506; and

2. Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505

Abstract

Interleukin-10 (IL-10) is a pleiotropic cytokine that controls inflammatory processes by suppressing the production of proinflammatory cytokines that are known to be transcriptionally regulated by nuclear factor-κB (NF-κB). Although still controversial, IL-10 has been shown to inhibit NF-κB activation through a process that involves proteolytic degradation of inhibitory subunit IκB-α. What is not known, however, is the mechanism by which IL-10 exerts its effect on IκB-α degradation. The present study investigates the possible role of reactive oxygen species (ROS) and their inhibition by IL-10 in NF-κB activation and IκB-α degradation in macrophages. Treatment of the cells with lipopolysaccharide (LPS) caused activation of NF-κB and rapid proteolysis of IκB-α as determined by the electrophoretic mobility shift assay, gene transfection, and Western blot. IL-10 pretreatment inhibited both NF-κB activation and IκB-α degradation. Both of these processes were also inhibited by ROS scavengers, catalase (H2O2 scavenger), and sodium formate (·OH scavenger) but were minimally affected by superoxide dismutase (O[Formula: see text] scavenger). These results suggests that ·OH radicals, formed by an H2O2-dependent, metal-catalyzed Fenton reaction, play a major role in this process. Electron spin resonance studies confirmed the formation of ·OH radicals in LPS-treated cells. Addition of IL-10 inhibited both IκB-α degradation and generation of ·OH radicals in response to LPS stimulation. These results demonstrate, for the first time, direct evidence for the role of IL-10 in ROS-dependent NF-κB activation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3