Induction of secondary apoptosis, inflammation, and lung fibrosis after intratracheal instillation of apoptotic cells in rats

Author:

Wang Liying,Scabilloni James F.,Antonini James M.,Rojanasakul Yon,Castranova Vincent,Mercer Robert R.

Abstract

Uncontrolled apoptosis has been associated with several pulmonary disorders; however, the molecular mechanism underlying this process and the fate of apoptotic cells in vivo are unclear. Here we show that direct administration of apoptotic cells to the lungs of rats caused pulmonary inflammation and fibrosis, as indicated by emigration of inflammatory cells to the air spaces, TNF-α immunoreactivity, and connective tissue accumulation, indicating a direct relationship between apoptotic cells and the observed lung pathologies. To determine how the lungs process the accumulated apoptotic cells, normal or apoptotic cells from autologous donor rats were labeled with fluorescent nanobeads and intratracheally instilled into the lungs of rats. Probe distribution and lung cell apoptosis were determined at various times over a 28-day period by confocal fluorescence microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. Labeled apoptotic cells were cleared by lung macrophages within 1 wk after the treatment. However, the total number of apoptotic cells in the lung remained high at 28 days posttreatment. The results indicate a continuous induction of secondary apoptosis by apoptotic cell instillation, which may contribute to the observed lung pathology. Analysis of lung cell apoptosis by caspase assays showed an elevation of caspase-8 but not caspase-9 in the treatment group at 28 days posttreatment, indicating involvement of the death receptor-mediated pathway in the apoptotic process. Together, our results demonstrate a direct effect of apoptotic cell accumulation on inflammatory and fibrotic pulmonary responses and the continuous induction of lung cell apoptosis by apoptotic cell instillation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference34 articles.

1. Mitochondrial Membrane Potential and Apoptosis Peripheral Blood Monocytes in Severe Human Sepsis

2. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo.

3. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DF, and Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216,1992.

4. Immune protection against septic peritonitis in endotoxin-primed mice is related to reduced neutrophil apoptosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3