Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep

Author:

Hillman Noah H.1,Nitsos Ilias2,Berry Clare2,Jane Pillow J.2,Kallapur Suhas G.12,Jobe Alan H.12

Affiliation:

1. Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and

2. School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia

Abstract

The initiation of ventilation in preterm, surfactant-deficient sheep without positive end-expiratory pressure (PEEP) causes airway injury and lung inflammation. We hypothesized that PEEP and surfactant treatment would decrease the lung injury from initiation of ventilation with high tidal volumes. Fetal sheep at 128-day gestational age were randomized to ventilation with: 1) no PEEP, no surfactant; 2) 8-cmH2O PEEP, no surfactant; 3) no PEEP + surfactant; 4) 8-cmH2O PEEP + surfactant; or 5) control (2-cmH2O continuous positive airway pressure) ( n = 6–7/group). After maternal anesthesia and hysterotomy, the head and chest were exteriorized, and the fetus was intubated. While maintaining placental circulation, the fetus was ventilated for 15 min with a tidal volume escalating to 15 ml/kg using heated, humidified, 100% nitrogen. The fetus then was returned to the uterus, and tissue was collected after 30 min for evaluation of early markers of lung injury. Lambs receiving both surfactant and PEEP had increased dynamic compliance, increased static lung volumes, and decreased total protein and heat shock proteins 70 and 60 in bronchoalveolar lavage fluid compared with other groups. Ventilation, independent of PEEP or surfactant, increased mRNA expression of acute phase response genes and proinflammatory cytokine mRNA in the lung tissue compared with controls. PEEP decreased mRNA for cytokines (2-fold) compared with groups receiving no PEEP. Surfactant administration further decreased some cytokine mRNAs and changed the distribution of early growth response protein-1 expression. The use of PEEP during initiation of ventilation at birth decreased early mediators of lung injury. Surfactant administration changed the distribution of injury and had a moderate additive protective effect.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Positive end‐expiratory pressure and surfactant administration mode influence function in ex‐vivo premature sheep lungs;Acta Paediatrica;2023-12-27

2. Impact of tidal volume strategy at birth on initiating lung injury in preterm lambs;American Journal of Physiology-Lung Cellular and Molecular Physiology;2023-11-01

3. Inflating Pressure and Not Expiratory Pressure Initiates Lung Injury at Birth in Preterm Lambs;American Journal of Respiratory and Critical Care Medicine;2023-09-01

4. Inflating or Overinflation? New Evidence for Lung Injury at Birth;American Journal of Respiratory and Critical Care Medicine;2023-09-01

5. Preterm lung and brain responses to mechanical ventilation and corticosteroids;Journal of Perinatology;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3