IL-27 enhances innate immunity of human pulmonary fibroblasts and epithelial cells through upregulation of TLR4 expression

Author:

Su Yufeng12,Yao Hua2,Wang Hong2,Xu Fang3,Li Dagen2,Li Dairong4,Zhang Xuemei2,Yin Yibing2,Cao Ju1

Affiliation:

1. Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China;

2. Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China;

3. Department of Emergency and Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; and

4. Department of Respiratory Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Lung tissue cells play an active role in the pathogenesis of pulmonary inflammatory diseases by releasing a variety of cytokines and chemokines. However, how lung tissue cells respond to microbial stimuli during pulmonary infections remains unclear. In this study, we found that patients with community-acquired pneumonia displayed increased IL-27 levels in bronchoalveolar lavage fluid and serum. We subsequently examined the immunopathological mechanisms for the activation of primary human lung fibroblasts and bronchial epithelial cells by IL-27. We demonstrated that IL-27 priming enhanced LPS-induced production of IL-6 and IL-8 from lung fibroblasts and bronchial epithelia cells via upregulating Toll-like receptor-4 (TLR4) expression. IL-27 upregulated TLR4 expression in lung fibroblasts through activation of Janus-activated kinase (JAK) and Jun NH2-terminal kinase (JNK) signaling pathways, and inhibition of the JAK pathway could partially decrease IL-27-induced TLR4 expression, while inhibition of JNK pathway could completely suppress IL-27-induced TLR4 expression. Our data suggest that IL-27 modulates innate immunity of lung tissue cells through upregulating TLR4 expression during pulmonary infections.

Funder

National Natural Science Foundation of China (NSFC)

Chongqing Science and Technology Commission, Chongqing People's Municipal Government (Chongqing Science and Technology Commission)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3