NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure

Author:

Ahn Bumsoo1,Beharry Adam W.2,Frye Gregory S.1,Judge Andrew R.2,Ferreira Leonardo F.1

Affiliation:

1. Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and

2. Department of Physical Therapy, University of Florida, Gainesville, Florida

Abstract

Patients with chronic heart failure (CHF) have dyspnea and exercise intolerance, which are caused in part by diaphragm abnormalities. Oxidants impair diaphragm contractile function, and CHF increases diaphragm oxidants. However, the specific source of oxidants and its relevance to diaphragm abnormalities in CHF is unclear. The p47phox-dependent Nox2 isoform of NAD(P)H oxidase is a putative source of diaphragm oxidants. Thus, we conducted our study with the goal of determining the effects of CHF on the diaphragm levels of Nox2 complex subunits and test the hypothesis that p47phox knockout prevents diaphragm contractile dysfunction elicited by CHF. CHF caused a two- to sixfold increase ( P < 0.05) in diaphragm mRNA and protein levels of several Nox2 subunits, with p47phox being upregulated and hyperphosphorylated. CHF increased diaphragm extracellular oxidant emission in wild-type but not p47phox knockout mice. Diaphragm isometric force, shortening velocity, and peak power were decreased by 20–50% in CHF wild-type mice ( P < 0.05), whereas p47phox knockout mice were protected from impairments in diaphragm contractile function elicited by CHF. Our experiments show that p47phox is upregulated and involved in the increased oxidants and contractile dysfunction in CHF diaphragm. These findings suggest that a p47phox-dependent NAD(P)H oxidase mediates the increase in diaphragm oxidants and contractile dysfunction in CHF.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3