17β-Estradiol affects lung function and inflammation following ozone exposure in a sex-specific manner

Author:

Fuentes Nathalie1,Nicoleau Marvin1,Cabello Noe1,Montes Deborah2,Zomorodi Naseem1,Chroneos Zissis C.1,Silveyra Patricia12ORCID

Affiliation:

1. Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania

2. Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

Inflammatory lung diseases affect men and women disproportionately, suggesting that fluctuations of circulating hormone levels mediate inflammatory responses. Studies have shown that ozone exposure contributes to lung injury and impairment of innate immunity with differential effects in men and women. Here, we hypothesized that 17β-estradiol enhances inflammation and airway hyperresponsiveness (AHR), triggered by ozone exposure, in the female lung. We performed gonadectomy and hormone treatment (17β-estradiol, 2 wk) in C57BL/6J female and male mice and exposed animals to 1 ppm of ozone or filtered air for 3 h. Twenty-four hours later, we tested lung function, inflammatory gene expression, and changes in bronchoalveolar lavage fluid (BALF). We found increased AHR and expression of inflammatory genes after ozone exposure. These changes were higher in females and were affected by gonadectomy and 17β-estradiol treatment in a sex-specific manner. Gonadectomized male mice displayed higher AHR and inflammatory gene expression than controls exposed to ozone; 17β-estradiol treatment did not affect this response. In females, ovariectomy reduced ozone-induced AHR, which was restored by 17β-estradiol treatment. Ozone exposure also increased BALF lipocalin-2, which was reduced in both male and female gonadectomized mice. Treatment with 17β-estradiol increased lipocalin-2 levels in females but lowered them in males. Gonadectomy also reduced ozone-induced expression of lung IL-6 and macrophage inflammatory protein-3 in females, which was restored by treatment with 17β-estradiol. Together, these results indicate that 17β-estradiol increases ozone-induced inflammation and AHR in females but not in males. Future studies examining diseases associated with air pollution exposure should consider the patient’s sex and hormonal status.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

AMERICAN PHYSIOLOGICAL SOCIETY PORTER FELLOWSHIP

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3