Developing a mouse model of human coronavirus NL63 infection: comparison with rhinovirus-A1B and effects of prior rhinovirus infection

Author:

Bentley J. Kelley1,Kreger Jordan E.1,Breckenridge Haley A.1,Singh Shilpi1,Lei Jing1,Li Yiran1,Baker Susan C.2,Lumeng Carey N.1,Hershenson Marc B.1

Affiliation:

1. Department of Pediatrics, University of Michigan-Ann Arbor, Ann Arbor, MI, United States

2. Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, United States

Abstract

Human coronavirus (HCoV)-NL63 causes respiratory tract infections in humans and employs angiotensin-converting enzyme 2 (ACE2) as a receptor. We sought to establish a mouse model of HCoV-NL63 and determine if prior RV-A1B infection affected HCoV-NL63 replication. HCoV-NL63 was propagated in LLC-MK2 cells expressing human ACE2. RV-A1B was grown in HeLa-H1 cells. C57BL6/J or transgenic mice expressing human ACE2 were infected intranasally with sham LLC-MK2 cell supernatant or 1 x 105 TCID50 units HCoV-NL63. Wild-type mice were infected with 1 x 106 PFU RV-A1B. Lungs were assessed for vRNA, bronchoalveolar lavage (BAL) cells, histology, HCoV-NL63 non-structural protein 3 (nsp3), and host gene expression by next generation sequencing and qPCR. To evaluate sequential infections, mice were infected with RV-A1B followed by HCoV-NL63 infection four days later. We report that hACE2 mice infected with HCoV-NL63 showed evidence of replicative infection with increased levels of vRNA, BAL neutrophils and lymphocytes, peribronchial and perivascular infiltrates, and expression of nsp3. Viral replication peaked three days after infection and inflammation persisted six days after infection. HCoV-NL63-infected hACE2 mice showed increased mRNA expression of IFNs, IFN-stimulated proteins and pro-inflammatory cytokines. Infection with RV-A1B four days before HCoV-NL63 significantly decreased both HCoV-NL63 vRNA levels and airway inflammation. Mice infected with RV-A1B prior to HCoV-NL63 showed increased expression of antiviral proteins compared to sham-treated mice. In conclusion, we established a mouse model of HCoV-NL63 replicative infection characterized by relatively persistent viral replication and inflammation. Prior infection with RV-A1B reduced HCoV-NL63 replication and airway inflammation, indicative of viral interference.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Elizabeth Weiser Caswell COVID-19 and Metabolic Disease Grant Program

Publisher

American Physiological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3