Affiliation:
1. Institute of Anatomy and Cell Biology, and
2. Department of Internal Medicine, Justus Liebig University, 35385 Giessen, Germany
Abstract
In the pulmonary vasculature, the mechanisms responsible for oxygen sensing and the initiation of hypoxia-induced vasoconstriction and vascular remodeling are still unclear. Nitric oxide (NO) and reactive oxygen species (ROS) are discussed as early mediators of the hypoxic response. Here, we describe a quantitative analysis of NO- and ROS-producing cells within the vascular walls of murine lung sections cultured at normoxia or hypoxia. Whereas the number of NO-producing cells was not changed by hypoxia, the number of ROS-generating cells was significantly increased. Addition of specific inhibitors revealed that mitochondria were the source of ROS. The participation of the individual mitochondrial complexes differed in normoxic and hypoxic ROS generation. Whereas normoxic ROS production required complexes I and III, hypoxic ROS generation additionally demanded complex II. Histochemically demonstrable succinate dehydrogenase activity of complex II in the arterial wall decreased during hypoxia. Inhibition of the reversed enzymatic reaction, i.e., fumarate reductase, by application of succinate, specifically abolished hypoxic, but not normoxic, ROS generation. Thus complex II plays an essential role in hypoxic ROS production. Presumably, its catalytic activity switches from succinate dehydrogenase to fumarate reductase at reduced oxygen tension, thereby modulating the directionality of the electron flow.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献