Pathway to lamellar bodies for surfactant protein A

Author:

Fisher Aron B.1,Dodia Chandra1,Ruckert Peter1,Tao Jian-Qin1,Bates Sandra R.1

Affiliation:

1. Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Alveolar surfactant protein A (SP-A) is endocytosed by type II epithelial cells through clathrin-dependent uptake and targeted to lamellar bodies for resecretion. However, the mechanism for secretion of newly synthesized SP-A, whether regulated exocytosis of lamellar bodies or constitutive secretion, is unresolved. If it is the latter, lamellar body SP-A would represent endocytosed protein. Amantadine, an inhibitor of clathrin-coated vesicle budding, was used to evaluate the role of endocytosis in accumulation of SP-A in lamellar bodies. In isolated rat lungs, amantadine (10 mM) inhibited uptake of endotracheally instilled35S-labeled biosynthesized surfactant proteins by >80%. To study trafficking of newly synthesized SP-A, lungs were perfused for up to 6 h with [35S]methionine, and surfactant was isolated from lung lavage fluid and lamellar bodies were isolated from lung homogenate. With control lungs, the mean specific activity of [35S]SP-A (disintegrations per minute per microgram of SP-A) increased linearly with time of perfusion: it was significantly higher in isolated lamellar bodies than in surfactant and was increased in both compartments by 50–60% in the presence of 0.1 mM 8-bromo-cAMP. These results suggest a precursor-product relationship between lamellar body and extracellular [35S]SP-A. Specific activities in both compartments were unaffected by addition of amantadine (10 mM) to the lung perfusate, indicating that uptake from the alveolar space was not responsible for the increase in lamellar body [35S]SP-A. Thus the pathway for secretion of newly synthesized SP-A is by transfer from the site of synthesis to the storage/secretory organelle prior to lamellar body exocytosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3